Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell Death Dis ; 15(4): 278, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637559

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.


Asunto(s)
Síndromes Mielodisplásicos , Animales , Humanos , Ratones , Trastornos de Fallo de la Médula Ósea/complicaciones , Caspasa 8/genética , Caspasa 8/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38469648

RESUMEN

Acute respiratory distress syndrome (ARDS) is a fatal pulmonary disorder characterized by severe hypoxia and inflammation. Systemic and pulmonary infections are a leading cause of ARDS. The common respiratory pathogens include bacteria and virus, including Pseudomonas aeruginosa, Streptococcus aureus, Enterobacter species, coronavirus, influenza, and herpesviruses. COVID-19-associated ARDS is a new etiologic phenotype of the disease. The pathogenesis of ARDS caused by bacteria and viruses differs in host immune responses and lung mesenchymal injury. We postulate that both systemic and lung metabolomics of ARDS induced by virus may differ from those infected by other pathogens. This review aims to compare the metabolic signatures in blood and lung specimens. Both common and SARS-CoV-2-specific metabolomic signatures were comprehensively reviewed. The differences in metabolic profiles between COVID-19 and other etiology-associated ARDS may uncover new biomarkers, pathogenic mechanisms, druggable targets, and differential diagnosis.

3.
Stem Cell Reports ; 19(1): 100-111, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38101400

RESUMEN

Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.


Asunto(s)
Interleucina-3 , Leucemia Mieloide Aguda , Ratones , Humanos , Animales , Interleucina-3/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
4.
Biomedicines ; 11(11)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38002035

RESUMEN

Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of AT2 cells, media composition, and feeder cell origins. This article highlights the currently available methods for growing AT2 organoids and prospective improvements to improve the available culture techniques/conditions. Further, we discuss various applications, particularly those aimed at modeling human distal lung diseases and cell therapy.

5.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014329

RESUMEN

Background: In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims: This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods: We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results: Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions: This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.

6.
Stem Cell Res Ther ; 14(1): 185, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501095

RESUMEN

BACKGROUND: Acute lung injury is characterized by overwhelmingly elevated PAI-1 in both lung edema fluid and the circulating system. The role of increased PAI-1, encoded by Serpine1 gene, in the regeneration of injured lung epithelium has not been understood completely. This study aimed to investigate the role of Serpine1 in the regulation of alveolar type 2 epithelial cell (AT2) fate in a humanized mouse line carrying diseased mutants (Serpine1Tg). METHODS: Wild-type (wt) and Serpine1Tg AT2 cells were either cultured as monolayers or 3D alveolospheres. Colony-forming assay and total surface area of organoids were analyzed. AT1 and AT2 cells in organoids were counted by immunohistochemistry and fluorescence-activated cell sorting (FACS). To test the potential effects of elevated PAI-1 on the permeability in the epithelial monolayers, we digitized the biophysical properties of polarized AT2 monolayers grown at the air-liquid interface. RESULTS: A significant reduction in total AT2 cells harvested in Serpine1Tg mice was observed compared with wt controls. AT2 cells harvested from Serpine1Tg mice reduced significantly over the wt controls. Spheroids formed by Serpine1Tg AT2 cells were lesser than wt control. Similarly, the corresponding surface area, a readout of re-alveolarization of injured epithelium, was markedly reduced in Serpine1Tg organoids. FACS analysis revealed a significant suppression in the number of AT2 cells, in particular, the CD44+ subpopulation, in Serpine1Tg organoids. A lesser ratio of AT1:AT2 cells in Serpine1Tg organoids was observed compared with wt cultures. There was a significant increase in transepithelial resistance but not amiloride inhibition. CONCLUSIONS: Our study suggests elevated PAI-1 in injured lungs downregulates alveolar epithelial regeneration by reducing the AT2 self-renewal, particularly in the CD44+ cells.


Asunto(s)
Células Epiteliales Alveolares , Inhibidor 1 de Activador Plasminogénico , Ratones , Animales , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Células Cultivadas , Pulmón , Permeabilidad
7.
Res Sq ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909505

RESUMEN

Background Acute lung injury is characterized by overwhelmingly elevated PAI-1 in both lung edema fluid and the circulating system. The role of increased PAI-1, encoded by Serpine1 gene, in the regeneration of injured lung epithelium has not been understood completely. This study aimed to investigate the role of Serpine1 in the regulation of alveolar type 2 epithelial cell (AT2) fate in a humanized mouse line carrying diseased mutants (Serpine1Tg). Methods Wild type (wt) and Serpine1Tg AT2 cells were either cultured as monolayers or 3D alveolospheres. Colony forming assay and total surface area of organoids were analyzed. AT1 and AT2 cells in organoids were counted by immunohistochemistry and fluorescence-activated cell sorting (FACS). To test the potential effects of elevated PAI-1 on the permeability in the epithelial monolayers, we digitized the biophysical properties of polarized AT2 monolayers grown at the air-liquid interface. Results A significant reduction in total AT2 cells harvested in Serpine1Tg mice was observed compared with wt controls. AT2 cells harvested from Serpine1Tg mice reduced significantly over the wt controls. Spheroids formed by Serpine1Tg AT2 cells were lesser than wt control. Similarly, the corresponding surface area, a readout of realveolarization of injured epithelium, was markedly reduced in Serpine1Tg organoids. FACS analysis revealed a significant suppression in the number of AT2 cells, in particular, the CD44+ subpopulation, in Serpine1Tg organoids. A lesser ratio of AT1:AT2 cells in Serpine1Tg organoids was observed compared with wt cultures. There was a significant increase in transepithelial resistance but not amiloride inhibition. Conclusions Our study suggests elevated PAI-1 in injured lungs downregulates alveolar epithelial regeneration by reducing the AT2 self-renewal, particularly in the CD44+ cells.

8.
Biomedicines ; 11(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36831104

RESUMEN

Emerging evidence suggests that Gram-negative bacteria release bacterial outer membrane vesicles (OMVs) and that these play an important role in the pathogenesis of bacterial infection-mediated inflammatory responses and organ damage. Despite the fact that scattered reports have shown that OMVs released from Gram-negative bacteria may function via the TLR2/4-signaling pathway or induce pyroptosis in macrophages, our study reveals a more complex role of OMVs in the development of inflammatory lung responses and macrophage pro-inflammatory activation. We first confirmed that various types of Gram-negative bacteria release similar OMVs which prompt pro-inflammatory activation in both bone marrow-derived macrophages and lung alveolar macrophages. We further demonstrated that mice treated with OMVs via intratracheal instillation developed significant inflammatory lung responses. Using mouse inflammation and autoimmune arrays, we identified multiple altered cytokine/chemokines in both bone marrow-derived macrophages and alveolar macrophages, suggesting that OMVs have a broader spectrum of function compared to LPS. Using TLR4 knock-out cells, we found that OMVs exert more robust effects on activating macrophages compared to LPS. We next examined multiple signaling pathways, including not only cell surface antigens, but also intracellular receptors. Our results confirmed that bacterial OMVs trigger both surface protein-mediated signaling and intracellular signaling pathways, such as the S100-A8 protein-mediated pathway. In summary, our studies confirm that bacterial OMVs strongly induced macrophage pro-inflammatory activation and inflammatory lung responses via multi-signaling pathways. Bacterial OMVs should be viewed as a repertoire of pathogen-associated molecular patterns (PAMPs), exerting more robust effects than Gram-negative bacteria-derived LPS.

9.
Front Immunol ; 14: 1342429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250062

RESUMEN

Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.


Asunto(s)
Enfermedad Granulomatosa Crónica , Sarcoidosis , Humanos , Biomarcadores , Algoritmos , Aprendizaje Automático , Sarcoidosis/diagnóstico , Sarcoidosis/genética
10.
PLoS Comput Biol ; 18(10): e1010603, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36269761

RESUMEN

Metaproteomics based on high-throughput tandem mass spectrometry (MS/MS) plays a crucial role in characterizing microbiome functions. The acquired MS/MS data is searched against a protein sequence database to identify peptides, which are then used to infer a list of proteins present in a metaproteome sample. While the problem of protein inference has been well-studied for proteomics of single organisms, it remains a major challenge for metaproteomics of complex microbial communities because of the large number of degenerate peptides shared among homologous proteins in different organisms. This challenge calls for improved discrimination of true protein identifications from false protein identifications given a set of unique and degenerate peptides identified in metaproteomics. MetaLP was developed here for protein inference in metaproteomics using an integrative linear programming method. Taxonomic abundance information extracted from metagenomics shotgun sequencing or 16s rRNA gene amplicon sequencing, was incorporated as prior information in MetaLP. Benchmarking with mock, human gut, soil, and marine microbial communities demonstrated significantly higher numbers of protein identifications by MetaLP than ProteinLP, PeptideProphet, DeepPep, PIPQ, and Sipros Ensemble. In conclusion, MetaLP could substantially improve protein inference for complex metaproteomes by incorporating taxonomic abundance information in a linear programming model.


Asunto(s)
Programación Lineal , Espectrometría de Masas en Tándem , Humanos , ARN Ribosómico 16S/genética , Proteínas/química , Péptidos/química
11.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L515-L524, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098461

RESUMEN

Failure to regenerate injured alveoli functionally and promptly causes a high incidence of fatality in coronavirus disease 2019 (COVID-19). How elevated plasminogen activator inhibitor-1 (PAI-1) regulates the lineage of alveolar type 2 (AT2) cells for re-alveolarization has not been studied. This study aimed to examine the role of PAI-1-Wnt5a-ß catenin cascades in AT2 fate. Dramatic reduction in AT2 yield was observed in Serpine1Tg mice. Elevated PAI-1 level suppressed organoid number, development efficiency, and total surface area in vitro. Anti-PAI-1 neutralizing antibody restored organoid number, proliferation and differentiation of AT2 cells, and ß-catenin level in organoids. Both Wnt family member 5A (Wnt5a) and Wnt5a-derived N-butyloxycarbonyl hexapeptide (Box5) altered the lineage of AT2 cells. This study demonstrates that elevated PAI-1 regulates AT2 proliferation and differentiation via the Wnt5a/ß catenin cascades. PAI-1 could serve as autocrine signaling for lung injury repair.


Asunto(s)
COVID-19 , Inhibidor 1 de Activador Plasminogénico , Proteína Wnt-5a , beta Catenina , Animales , Ratones , Anticuerpos Neutralizantes , beta Catenina/metabolismo , Regulación hacia Abajo , Vía de Señalización Wnt/fisiología , Proteína Wnt-5a/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Alveolos Pulmonares/citología , Proliferación Celular
12.
Stem Cell Res Ther ; 13(1): 111, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313961

RESUMEN

BACKGROUND: The cGMP-dependent type 2 protein kinase, encoded by the prkg2 gene, is highly expressed in alveolar type 2 epithelial (AT2) cells. It is unclear whether prkg2 regulates AT2 cell homeostasis and re-alveolarization of injured lungs. This study aimed to investigate the role of prkg2 in the regulation of the fate of AT2 in vitro. METHODS: Primary AT2 cells of wild-type (wt) and prkg2-/- mice were co-cultured with fibroblasts as three-dimensional organoids. The colony formation was analyzed between days 4 and 12 post-seeding. EdU assay was used to detect cells with active DNA synthesis. AT1 and AT2 cells in organoids were visualized with anti-podoplanin and anti-surfactant protein C antibodies, respectively. RESULTS: Prkg2-/- AT2 cells developed a greater number of organoids than wt controls. However, compared to wt organoids, a lower number of AT2 but a greater number of AT1 cells were visualized. In addition, a lower number of proliferated cells (EdU+) were observed in prkg2-/- organoids compared to wt controls. The numbers of organoids and EdU+ cells were significantly reduced in protein kinase A (PKA) inhibitor H89-treated wt and prkg2-/- cultures. Organoids and EdU+ cells were increased by lipopolysaccharides (LPS) in both wt and prkg2-/- groups. The increase in the proportion of AT1 and AT2 cells in organoids was only seen in wt controls. CONCLUSIONS: Prkg2 may regulate the lineage of AT2 cells, which is affected by endotoxins and the interactive PKA signaling pathway.


Asunto(s)
Pulmón , Organogénesis , Animales , Células Cultivadas , Técnicas de Cocultivo , Ratones , Transducción de Señal
13.
Int J Biol Sci ; 18(3): 1107-1119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173542

RESUMEN

The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.


Asunto(s)
Células Epiteliales Alveolares , Surfactantes Pulmonares , Animales , Autofagia/genética , Cuerpos Lamelares , Lisosomas/metabolismo , Ratones , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo
15.
Biomed Environ Sci ; 34(9): 743-749, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34530966

RESUMEN

The aim of this study was to estimate the seroprevalence of immunoglobulin M (IgM) and G (IgG) antibodies against SARS-CoV-2 in asymptomatic people in Wuhan. This was a cross-sectional study, which enrolled 18,712 asymptomatic participants from 154 work units in Wuhan. Pearson Chi-square test, t-test, and Mann-Whitney test were used to compare the standardized seroprevalence of IgG and IgM for age and gender between different groups. The results indicated the standardized seroprevalence of IgG and IgM showed a downward trend and was significantly higher among females than males. Besides, different geographic areas and workplaces had different seroprevalence of IgG among asymptomatic people, and the number of abnormalities in CT imaging were higher in IgG antibody-positive cases than IgG-negative cases. We hope these findings can provide references for herd immunity investigation and provide basis for vaccine development.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/epidemiología , Portador Sano/epidemiología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , Portador Sano/inmunología , Niño , Preescolar , China/epidemiología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ocupaciones/clasificación , Fosfoproteínas/inmunología , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
17.
Front Immunol ; 12: 691249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025688

RESUMEN

Background: Dynamic D-dimer level is a key biomarker for the severity and mortality of COVID-19 (coronavirus disease 2019). How aberrant fibrinolysis influences the clinical progression of COVID-19 presents a clinicopathological dilemma challenging intensivists. Methods: We performed meta-analysis and meta regression to analyze the associations of plasma D-dimer with 106 clinical variables to identify a panoramic view of the derangements of fibrinolysis in 14,862 patients of 42 studies. There were no limitations of age, gender, race, and country. Raw data of each group were extracted separately by two investigators. Individual data of case series, median and interquartile range, and ranges of median or mean were converted to SDM (standard deviation of mean). Findings: The weighted mean difference of D-dimer was 0.97 µg/mL (95% CI 0.65, 1.29) between mild and severe groups, as shown by meta-analysis. Publication bias was significant. Meta-regression identified 58 of 106 clinical variables were associated with plasma D-dimer levels. Of these, 11 readouts were negatively related to the level of plasma D-dimer. Further, age and gender were confounding factors. There were 22 variables independently correlated with the D-dimer level, including respiratory rate, dyspnea plasma K+, glucose, SpO2, BUN (blood urea nitrogen), bilirubin, ALT (alanine aminotransferase), AST (aspartate aminotransferase), systolic blood pressure, and CK (creatine kinase). Interpretation: These findings support elevated D-dimer as an independent predictor for both mortality and complications. The identified D-dimer-associated clinical variables draw a landscape integrating the aggregate effects of systemically suppressive and pulmonary hyperactive derangements of fibrinolysis, and the D-dimer-associated clinical biomarkers, and conceptually parameters could be combined for risk stratification, potentially for tracking thrombolytic therapy or alternative interventions.


Asunto(s)
Biomarcadores/metabolismo , COVID-19/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , SARS-CoV-2/fisiología , Pruebas Diagnósticas de Rutina , Progresión de la Enfermedad , Humanos , Admisión del Paciente , Índice de Severidad de la Enfermedad
19.
bioRxiv ; 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33442688

RESUMEN

Rapid spread of COVID-19 has caused an unprecedented pandemic worldwide, and an inserted furin site in SARS-CoV-2 spike protein (S) may account for increased transmissibility. Plasmin, and other host proteases, may cleave the furin site of SARS-CoV-2 S protein and γ subunits of epithelial sodium channels (γ ENaC), resulting in an increment in virus infectivity and channel activity. As for the importance of ENaC in the regulation of airway surface and alveolar fluid homeostasis, whether SARS-CoV-2 will share and strengthen the cleavage network with ENaC proteins at the single-cell level is urgently worthy of consideration. To address this issue, we analyzed single-cell RNA sequence (scRNA-seq) datasets, and found the PLAU (encoding urokinase plasminogen activator), SCNN1G (γENaC), and ACE2 (SARS-CoV-2 receptor) were co-expressed in alveolar epithelial, basal, club, and ciliated epithelial cells. The relative expression level of PLAU, TMPRSS2, and ACE2 were significantly upregulated in severe COVID-19 patients and SARS-CoV-2 infected cell lines using Seurat and DESeq2 R packages. Moreover, the increments in PLAU, FURIN, TMPRSS2, and ACE2 were predominately observed in different epithelial cells and leukocytes. Accordingly, SARS-CoV-2 may share and strengthen the ENaC fibrinolytic proteases network in ACE2 positive airway and alveolar epithelial cells, which may expedite virus infusion into the susceptible cells and bring about ENaC associated edematous respiratory condition.

20.
medRxiv ; 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935113

RESUMEN

Background How aberrant fibrinolysis influences the clinical progression of COVID-19 presents a clinicopathological dilemma challenging intensivists. To investigate whether abnormal fibrinolysis is a culprit or protector or both, we associated elevated plasma D-dimer with clinical variables to identify a panoramic view of the derangements of fibrinolysis that contribute to the pathogenesis of COVID-19 based on studies available in the literature. Methods We performed this systematic review based on both meta-analysis and meta-regression to compute the correlation of D-dimer at admission with clinical features of COVID-19 patients in retrospective studies or case series. We searched the databases until Aug 18, 2020, with no limitations by language. The first hits were screened, data extracted, and analyzed in duplicate. We did the random-effects meta-analyses and meta-regressions (both univariate and multivariate). D-dimer associated clinical variables and potential mechanisms were schematically reasoned and graphed. Findings Our search identified 42 observational, or retrospective, or case series from six countries (n=14,862 patients) with all races and ages from 1 to 98-year-old. The weighted mean difference of D-dimer was 0.97 µg/mL (95% CI 0.65, 1.29) between relatively mild (or healthy control) and severely affected groups with significant publication bias. Univariate meta-regression identified 58 of 106 clinical variables were associated with plasma D-dimer levels, including 3 demographics, 5 comorbidies, 22 laboratory tests, 18 organ injury biomarkers, 8 severe complications, and 2 outcomes (discharge and death). Of these, 11 readouts were negatively associated with the level of plasma D-dimer. Further, age and gender were confounding factors for the identified D-dimer associated variables. There were 22 variables independently correlated with the D-dimer level, including respiratory rate, dyspnea plasma K+, glucose, SpO2, BUN, bilirubin, ALT, AST, systolic blood pressure, and CK. We thus propose that "insufficient hyperfibrinolysis (fibrinolysis is accelerated but unable to prevent adverse clinical impact for clinical deterioration COVID-19)" as a peculiar mechanism. Interpretation The findings of this meta-analysis- and meta-regression-based systematic review supports elevated D-dimer as an independent predictor for mortality and severe complications. D-dimer-associated clinical variables draw a landscape integrating the aggregate effects of systemically suppressive and locally (i.e., in the lung) hyperactive derangements of fibrinolysis. D-dimer and associated clinical biomarkers and conceptually parameters could be combined for risk stratification, potentially for tracking thrombolytic therapy or alternative interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...